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Abstract

In the standard approach for simulating fluid–structure interaction problems the solution of the set of equations for
solids provides the three displacement components while the solution of equations for fluids provides the three velocity
components and pressure. In the present paper a novel reformulation of the elastodynamic equations for Hookean solids
is proposed so that they contain the same unknowns as the Navier–Stokes equations, namely velocities and pressure. A
separate equation for pressure correction is derived from the constitutive equation of the solid material. The system of
equations for both media is discretised using the same method (finite volume on collocated grids) and the same iterative
technique (SIMPLE algorithm) is employed for the pressure–velocity coupling. With this approach, the continuity of the
velocity field at the interface is automatically satisfied. A special pressure correction procedure that enforces the compat-
ibility of stresses at the interface is also developed. The new method is employed for the prediction of pressure wave prop-
agation in an elastic tube. Computations were carried out with different meshes and time steps and compared with
available analytic solutions as well as with numerical results obtained using the Flügge equations that describe the defor-
mation of thin shells. For all cases examined the method showed very good performance.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Fluid–structure interaction (FSI) is encountered in many areas of engineering (aerospace, civil or mechan-
ical) as well as other scientific disciplines including medicine, biomechanics, etc. FSI analysis becomes crucial
when the deformation of a fluid boundary, for example a vessel wall, cannot be neglected. During this inter-
action, the pressure and the viscous stresses of the fluid act on the solid boundary and lead to structural defor-
mations, which in turn affect the fluid flow and consequently the velocities, pressure and viscous stresses of the
fluid. Thus the response of the system can only be determined if the coupled problem is solved. In the case of
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liquids, which are almost incompressible, even a small structural deformation can have a significant effect. For
example, in the case of blood flow in arteries, which are extremely flexible, the wave speed is 200 times slower
than in an equivalent rigid tube.

In the standard approach for simulating fluid–structure interaction problems, the solids equations are
solved for the three components of displacement while the fluids equations provide the three velocity compo-
nents and pressure. In this approach, the pressure and viscous stresses become the boundary conditions for the
solid equations. These are then solved and from the calculated displacements a new computational domain is
obtained in which the fluid equations are solved again. This is the fundamental concept of the so-called ‘‘par-
titioned” methods [1–5]. There are various approaches regarding the degree of coupling i.e. how often and
when information is transferred from one medium to the other. For example in an implicitly (or fully) coupled
approach, the exchange of information is repeated until both sets of equations converge to within a prescribed
tolerance and only then is the procedure advanced to the next time step.

‘‘Monolithic” approaches, in which the two components are discretised and solved simultaneously, have
also been developed. They employ almost exclusively the finite element method and rely on the solution of
a large coupled system of equations with unknowns the velocity, pressure and displacement. For example,
Bazilevs et al. [6] solve the coupled system (obtained with Newton’s method) iteratively with the GMRES pro-
cedure and simple diagonal scaling. Heil [7] examines the performance of other preconditioning techniques.
Tezduyar et al. [8] discuss the pros and cons of three coupling techniques (block-iterative, quasi-direct and
direct coupling).

In order to derive a unified approach for fluid–structure interaction problems, two issues need to be
resolved: common discretisation method and common solution algorithm. ‘‘Partitioned” methods usually
employ the finite element method for solids and the finite volume method for fluids. ‘‘Monolithic” methods
use almost exclusively the finite element method, as already mentioned.

Both discretisation methods have a common starting equation but differ on how the integration of this
equation in the domain is carried out [9]. The Galerkin finite element method sets the weighting functions
equal to the shape functions over a control volume and zero outside. This leads to volume integrals that
are computed using an appropriate quadrature rule. The method is very well established, has sound mathe-
matical formulation and has been used very successfully for structural as well as flow problems [10–12]. On
the other hand, in the finite volume method, the weighting functions take the value of unity over a control
volume and zero outside. This transforms the volume integrals to surface integrals and makes the method con-
servative i.e. the flux through a face shared by two adjacent control volumes is the same for both volumes [13].
This property makes the method very attractive for fluid flow and heat transfer simulations. It is still the most
widely used method in the CFD community [14] but it has also been employed successfully for structural anal-
ysis problems. For example, a finite volume approach with non-orthogonal cells for two-dimensional plane
elastostatic problems is proposed in [15]. The method was later extended to handle incompressible materials
in a formulation that includes displacement and pressure as independent variables [16]. Discretisation of the
elastic solid mechanics equations in three dimensions on an unstructured grid using this method is presented in
[13]. Fallah et al. [17] extended the method to large deformations and showed that the results are comparable
with the finite element method.

The solution algorithm is also usually different for the two media. The elastodynamic equations most often
are solved implicitly i.e. the discretised equations are cast in matrix form with unknowns the three components
of the displacement vector. A conjugate gradient solver with preconditioning is then employed for the solution
of the linear system. On the other hand, the Navier–Stokes equations are typically solved using a pressure-cor-
rection method in a segregated manner i.e. each equation is solved separately for one unknown (for example a
velocity component or pressure). The segregated solution method can naturally handle non-linearities and is
by far the preferred method in computational fluid dynamics. It has also been used for structural analysis
problems. For example Demirdžic et al. [18] used the finite volume method and a segregated solution algo-
rithm coupled with multigrid acceleration to derive benchmark solutions for three cases. In [19] a discretisa-
tion practice was proposed that provides rapid convergence for a segregated solution method.

In the context of fluid–structure interaction, several investigators have combined the finite volume method
and the segregated solution approach. For example Greeshields et al. [20] solved separately the solid equations
for displacements and the fluid equations for velocity and pressure. The motion of the interface was accounted
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for but they reported convergence problems when the modulus of elasticity of the solid was much smaller to
the bulk modulus of the fluid. Ivankovic et al. [21] used a very similar method to study the blood flow through
an atherosclerotic artery but the mesh was fixed and did not observe stability problems. Greenshields and Wel-
ler [22] derived a velocity–pressure formulation to solve a set of momentum and continuity equations that gov-
erns both fluid and solid, with velocity and pressure being the unknown variables for both media. A phase
function is used to differentiate between them while the equations are discretised and solved in a single
domain. Karac [23] used both a displacement–velocity–pressure as well as a velocity–pressure formulation
to study the drop impact of fluid-filled polyethylene containers.

The main objective of the paper is to develop a novel velocity–pressure formulation and solution method
for fluid–structure interaction problems. The equation for pressure in fluids is derived from the continuity
equation (as it is customary) while for solids is derived from the constitutive equation of the solid material.
The governing partial differential equations are solved using the same discretisation method and solution algo-
rithm (finite volume and SIMPLE algorithm respectively). The paper is organised as follows: the first part
(Sections 2–5) deals with solids only (new reformulation of the equations in terms of velocity and pressure,
associated boundary conditions and numerical solution method). The second part (Section 6) deals with
the coupling between fluid and structure and more specifically presents a novel pressure correction methodol-
ogy that enforces the compatibility of stresses (force balance) at the interface. Results from the application of
the method to wave propagation in a flexible tube are presented in Section 7 while in Section 8 the main con-
tributions and findings of the paper are summarized.

2. Conservation equations for continuous media

The following set of equations describe continuous media and are thus valid for both solids and fluids
[24,25]:

Continuity equation (mass conservation)
oq
ot
þ oqU i

oxi
¼ 0 ð1Þ
Momentum equations (Newton’s second law of motion in three Cartesian directions)
oqU i

ot
þ oqUiU j

oxj
¼ orij

oxj
ð2Þ
In the above equations q is the density, Ui the velocity component in direction i and rij the components of the
stress tensor. This paper is concerned with small displacements only and therefore these equations are written
in an Eulerian reference frame. The assumption of small deformations also simplifies the numerical simula-
tions because the computational mesh remains fixed. For larger deformations an arbitrary Langrangian–Eule-
rian approach is necessary in which the fluid and structure meshes move, following the deformation of the
solid.

The aforementioned partial differential equations, which are valid for both media as already mentioned, are
expressed in terms of fluid and structure velocities. The difference lies in the constitutive relation for the stress
tensor r. In fluids it is expressed in terms of the rate of strain tensor (i.e. velocities) and pressure, while in solids
it is a function of the strain tensor (i.e. displacements). More specifically, for a linear, viscous (or Newtonian)
fluid, the elements of the stress tensor rij are given by:
rij ¼ � p þ 2

3
g

oUk

oxk

� �
dij þ g

oU i

oxj
þ oUj

oxi

� �
ð3Þ
where g is the laminar viscosity of the fluid and p the pressure. For incompressible flow oUk
oxk
¼ 0 (due to the

continuity equation) and the first term inside the parenthesis on the right hand side contains only pressure.
Substituting this expression to Eq. (2) the well known Navier–Stokes equations are obtained.

For a linear, isotropic, elastic solid, the generalized Hooke’s law is
rij ¼ kevdij þ 2leij ð4Þ
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where k and l are the two Lamé coefficients and the strain tensor e is defined by:
eij ¼
1

2

oDi

oxj
þ oDj

oxi

� �
ð5Þ
where Di are the components of the displacement vector in Cartesian coordinates. In Eq. (4), ev is called dila-
tation and is equal to the trace of the tensor e (or the divergence of the displacement vector) i.e.
ev ¼ trðeÞ ¼ oDk

oxk
ð6Þ
where tr(�) is the trace operator. The Lamé coefficients are related to the Young’s modulus (E) and the Poisson
ratio (m) with the following expressions:
k ¼ mE
ð1þ mÞð1� 2mÞ

l ¼ E
2ð1þ mÞ

ð7Þ
Substituting (5) and (6) into Eq. (4) we get:
rij ¼ k
oDk

oxk
dij þ l

oDi

oxj
þ oDj

oxi

� �
ð8Þ
Eqs. (4) and (8) are not general as they cannot be used for incompressible solids for which m ? 0.5. The reason
is that the Lamé coefficient k tends to infinity and the dilatation tends to 0 so their product k oDk

oxk
that appears

on the right hand side of the previous equation is indeterminable. This leads to the node-locking problem for
incompressible solid materials [10,11]. Note that there are many practical applications involving incompress-
ible materials, for example wave propagation in human arteries [26]. This problem is resolved by treating solid
pressure as a separate unknown variable. In solid mechanics pressure is defined as
p ¼ � trðrÞ
3
¼ � 1

3
ðr11 þ r22 þ r33Þ ð9Þ
Using the definition of the bulk modulus K,
K ¼ � dp
dV =V

¼ q
dp
dq

ð10Þ
it can be easily shown that pressure is related to dilatation ev by:
p ¼ �K � ev ð11Þ

The bulk modulus K is related to the Lamé coefficients by
K ¼ kþ 2

3
l ¼ E

3ð1� 2mÞ ð12Þ
Introducing pressure into the constitutive Eq. (8) we get:
rij ¼ � p þ 2

3
l

oDk

oxk

� �
dij þ l

oDi

oxj
þ oDj

oxi

� �
ð13Þ
This expression is valid for both compressible and incompressible solids because all the variables have now
finite values and therefore this form is very convenient for the development of a general algorithm. Note also
the similarity between the two constitutive expressions for the stress tensor for fluids and solids (i.e. Eqs. (3)
and (13)).

The additional unknown (pressure) is obtained from the following equation:
1

K
p þ ev ¼ 0) 1

K
p þ oDi

oxi
¼ 0 ð14Þ
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which is a rearranged form of Eq. (11). However in (14), both terms 1
K p and oDi

oxi
have finite values when m ? 0.5

(and therefore K ?1). For incompressible materials pressure must be extracted from the equation
ev ¼ 0) oDi

oxi
¼ 0 ð15Þ
It can be seen therefore that the role of pressure for incompressible solids is to drive the divergence of the dis-
placement field to 0. This is very similar to the role of pressure for incompressible fluids; it drives the diver-
gence of the velocity field to zero. Note also that Eq. (15) does not contain pressure as unknown, so it must be
extracted. This is analogous to the problem of obtaining pressure from the continuity equation in incompress-
ible fluids. The developed approach can be directly applied to incompressible solids as will be shown later.

Substituting Eq. (13) into Eq. (2), after some algebra and assuming that the Lamé coefficients are constant
we get:
oqU i

ot
þ oqUjUi

oxj
¼ � 1þ l

3K

� � op
oxi
þ l

o2Di

ox2
j

ð16Þ
Eq. (16) is in a very useful form since it can be used for either compressible or incompressible solids and all
terms have finite values. For incompressible solids 1þ l

3K ! 1 because 1
K ! 0 and l remains finite. For small

displacements, the convection term
oqUiUj

oxj
is very small compared to the transient term and is usually neglected.

However, in the following sections, this term will be retained as it is important for the fluid equations. Eq. (16)
is supplemented by Eq. (14) as well as the relationship between displacements and solid velocities. Therefore,
the following system of equations describes the solid dynamics mathematically:
oqUi
ot þ

oqUjUi

oxj
¼ � 1þ l

3K

� �
op
oxi
þ l o2Di

ox2
j
ðaÞ

oDi
ot ¼ Ui ðbÞ
1
K p þ oDi

oxi
¼ 0 ðcÞ

8>><
>>: ð17Þ
The solid velocity is the time derivative of displacement and this is expressed mathematically with Eq. (17)(b).
The corresponding system for a weakly compressible fluid is:
oqUi
ot þ

oqUjUi

oxj
¼ � op

oxi
� o

oxi

2
3
g oUk

oxk

� �
þ o

oxj
g oUi

oxj
þ oUj

oxi

� �h i
ðaÞ

q
K

op
ot þ

oqUi
oxi
¼ 0 ðbÞ

8<
: ð18Þ
where the definition of the bulk modulus of the fluid K was used to express the time derivative oq
ot in the con-

tinuity Eq. (1) in terms of pressure as q
K

op
ot.

For incompressible solids, system (17) reduces to
oqUi
ot þ

oqUjUi

oxj
¼ � op

oxi
þ l o2Di

ox2
j
ðaÞ

oDi
ot ¼ Ui ðbÞ

oDi
oxi
¼ 0 ðcÞ

8>><
>>: ð19Þ
while the corresponding system for an incompressible flow with constant viscosity g is:
oqUi
ot þ

oqUjUi

oxj
¼ � op

oxi
þ g o2Ui

ox2
j
ðaÞ

oUi
oxi
¼ 0 ðbÞ

8<
: ð20Þ
The similarity between systems (19) and (20) is obvious. Systems (17) and (18) are also similar; the difference
lies in the constant coefficient of the pressure gradient term and the rest of the terms in the right hand side.
However, this is not a major problem since these terms are generally treated as a source in the discretised form.
Although the forms are similar, one should not forget that the system of equations for solids is energy con-
serving (i.e. there is no mechanism for energy dissipation). For fluids on the other hand, the viscous terms are
energy dissipating.
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3. A velocity–pressure formulation for solids

Since the two conservation laws for continuous media (Eqs. (1) and (2)) are written in terms of velocities, it
makes sense to use velocities as dependent variables for both solids and fluids. Such an approach has an addi-
tional advantage for fluid–structure interaction problems, namely the continuity of velocity field at the inter-
face is satisfied automatically.

Eq. (17)(a) contains already velocity and pressure in the left and right hand sides respectively. However, the
second term on the right hand side is the Laplacian of displacement. Also (17)(c) contains the divergence of
displacement. The presence of displacement in (17)(a,c) is not a major problem, because it is linked with veloc-
ity through (17)(b). The system of the two Eqs. (17)(a,b) can be integrated in time with any time advancement
method. In the present paper the second order trapezoidal rule (Crank Nicolson scheme) was selected for the
time advancement between time instants (k) and (k + 1) i.e.
q
U ðkþ1Þ

i �U ðkÞi
Dt þ oqU ðkþ1Þ

j U ðkþ1Þ
i

oxj
¼ 1

2
� 1þ l

3K

� �
opðkþ1Þ

oxi
þ l

o2Dðkþ1Þ
i

ox2
j

� 	

þ 1
2
� 1þ l

3K

� �
opðkÞ

oxi
þ l

o2DðkÞi
ox2

j

� 	
ðaÞ

Dðkþ1Þ
i �DðkÞi

Dt ¼ 1
2
ðU ðkÞi þ U ðkþ1Þ

i Þ ðbÞ
1
K pðkþ1Þ þ oDðkþ1Þ

i
oxi
¼ 0 ðcÞ

8>>>>>>>>>><
>>>>>>>>>>:

ð21Þ
Any time integration scheme could have been selected. Since the convection term is usually very small, tem-
poral accuracy for this term is not important and therefore it is evaluated implicitly at time instant (k + 1).
Solving Eq. (21)(b) for Dðkþ1Þ

i and substituting in (21)(a,c) the following system of equations that contains
as unknowns U ðkþ1Þ

i and p(k+1) is obtained:
q
U ðkþ1Þ

i �U ðkÞi
Dt þ oqU ðkþ1Þ

j U ðkþ1Þ
i

oxj
¼ l�Dt

4
� o

2U ðkþ1Þ
i

ox2
j
� 1

2
1þ l

3K

� �
opðkþ1Þ

oxi

þ l
2
� o

2DðkÞi
ox2

j
þ l�Dt

4

o2U ðkÞi
ox2

j
þ 1

2
� 1þ l

3K

� �
opðkÞ

oxi
þ l

o2DðkÞi
ox2

j

� 	
ðaÞ

2q
K

pðkþ1Þ

Dt þ
oqU ðkþ1Þ

i
oxi
¼ � 2q

Dt
oDðkÞi
oxi
� oqU ðkÞi

oxi
ðbÞ

8>>>>>><
>>>>>>:

ð22Þ
Apart from the pressure gradient and velocity Laplacian term at time instant (k + 1), the rest of the terms in
the right hand side of (22)(a) as well as all the terms in the right hand side of (22)(b) are known from the pre-
vious time step (k). This is the final set of equations for solids that must be solved iteratively to obtain U ðkþ1Þ

i

and p(k+1).
It must be noted at this point that several papers in the literature [27–30] as well as the book of LeVeque

[31] describe how the hyperbolic system of elastodynamic equations can be written in terms of velocities and
stresses. In the 3D case there are nine unknowns, namely the three velocity components and the six indepen-
dent components of the stress tensor (or equivalently the six strain components as there is a linear and invert-
ible stress–strain relationship for Hookean solids). Displacements themselves do not appear in the above
systems as they have been converted to velocities by taking the time derivative of the constitutive stress–strain
relationship. The resulting system is then solved using standard techniques suitable for hyperbolic systems
such Godunov-type schemes or the method of characteristics. From the velocities, the displacements are then
evaluated by integration. This is an elegant approach but it leads to a system with a large number of equations
(nine for the 3D case) but also most importantly such an approach cannot be easily coupled with the Navier–
Stokes equations that describe the motion of fluids. The reason is that the stresses in Newtonian fluids are
uniquely determined by the velocities and only one additional variable, pressure. This means that if the afore-
mentioned formulations for solids are used to solve a coupled fluid–structure interaction problem, some vari-
ables (velocities) will be evaluated in the whole domain, but from the rest of the variables, others will be
evaluated in fluid domain (pressure) and others in the solid domain (six stress or strain components). There
is no doubt that such approach can work but it can be quite cumbersome. Using the present approach, all
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four variables will be evaluated in the whole domain. Greenshields and Weller [22] have also proposed a veloc-
ity–pressure approach but the formulation of the momentum equation is different and pressure is extracted
from the general continuity equation.

4. Boundary conditions for the velocity–pressure equations

Having derived the system of partial differential equations that must be solved, the next step is the formu-
lation of boundary conditions using velocities and pressure. There are two general types of boundary condi-
tions for solids: prescribed displacement and prescribed traction. The implementation of these conditions for
the momentum and pressure equations is described in the following sections:

4.1. Prescribed displacement at the boundary

The velocity at the boundary is obtained simply by differentiating with respect to time the prescribed dis-
placement. This velocity can be used as Dirichlet condition for the numerical solution of Eq. (22)(a). The cor-
rect value of displacement is also used for the evaluation of the terms of the right hand side of (22)(a,b).

4.2. Prescribed traction at the boundary

Suppose that the prescribed traction is fi. Then the force balance at the boundary is:
rijnj ¼ fi ð23Þ
where nj are the components of the unit vector normal to the boundary and pointing outwards. Substituting
Eq. (13) for rij we get:
� p þ 2

3
l

oDk

oxk

� �
dij þ l

oDi

oxj
þ oDj

oxi

� �� �
nj ¼ fi ð24Þ
This is a vector equation. Projecting this equation to the boundary normal vector~n (i.e. taking the dot product
with ~n), we obtain:
ni � p þ 2

3
l

oDk

oxk

� �
dij þ l

oDi

oxj
þ oDj

oxi

� �� �
nj

� 	
¼ nifi ð25Þ
which after some algebra and employing Eqs. (12) and (14) becomes:
� k
K

p þ 2l
oDn

on
¼ nifi ð26Þ
where Dn = Dini is the displacement in the direction normal to the boundary and o
on denotes derivative in that

direction. Note that this equation can also be derived directly from (4) if both i and j are in the~n direction. The
ratio k

K ¼ 3m
1þm i.e. remains finite so Eq. (26) is applicable for both compressible and incompressible solids. This is

an equation that implicitly links the pressure and the normal component of displacement at the interface and
will provide the boundary condition for the pressure equation as will be explained in the next section.

Two more scalar equations can be obtained by taking the dot product of Eq. (24) with tangential vectors s1

and s2. For example for vector s1 we get:
l
oDs1

on
þ oDn

os1

� �
¼ s1i fi ð27Þ
where Ds1
¼ Dis1i is the tangential component of displacement at the boundary in the direction s1. Again this

equation could have been obtained directly from (4). A similar equation can be obtained for s2. Note that
these equations do not contain pressure. They are used for the evaluation of Ds1

;Ds2
at the boundary. From

the values of Dn;Ds1
;Ds2

the displacement components in the Cartesian directions Di can be easily evaluated.
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5. Discretisation and solution algorithm

The next step is the selection of discretisation and solution method of the reformulated set of partial dif-
ferential equations that describe the solid behaviour. The selected discretisation method is the finite volume
method while for the iterative solution of equations the SIMPLE algorithm is employed. This combination
has been used successfully for decades in computational fluid dynamics [14]. In fluid mechanics, the algorithm
is employed to extract a pressure correction equation from the continuity equation. It will be used here to
derive a pressure correction equation from (22)(b).

In the following equations the time step indicator (k + 1) is dropped on the understanding that the
unknown variables Ui and p refer to this time step. The discretised momentum equations (22)(a) can be written
as:
AUi
P � Ui;P ¼

X
nb

AUi
nb � Ui;nb þ SUi �

1

2
1þ l

3K

� � dp
dxi

DV ð28Þ
where P denotes the centroid of the control volume around which the equation is discretised and nb denotes
the neighbouring points. SUi contains all the source terms (such as contributions from the previous time step
(k) and non-orthogonality terms, etc.) apart from the contribution of the pressure gradient term that appears
explicitly in the semi-discretised form dp

dxi
. Eq. (28) are solved using a pressure field p* which generally will not

be the correct one (it will be correct only at convergence within one time step) and therefore the resulting
velocities ðU �i Þ will not satisfy the discretised form of Eq. (22)(b). So pressures and face velocities need to
be corrected according to
p ¼ p� þ p0

Un ¼ U �n þ U 0n
ð29Þ
and these corrected values should satisfy the equation:
2qP

K
p�P þ p0P

Dt
� DV þ

X
face f

½qðU �n þ U 0nÞA�f ¼ Sm ð30Þ
where DV the volume of the computational cell. The term Sm on the right hand side is equal to
Sm ¼ �

P
face fð

2q
Dt DnAþ qUnAÞf and is known from the previous time step (k). In the previous equations

Un = Uini and Dn = Dini are the velocity and displacement components normal to the face. The face velocities
U �n in Eq. (30) are evaluated using the Rhie and Chow [35] interpolation method:
U �n ¼ U �n �
1

2
1þ l

3K

� �DV

AUi
P

dp�

dn
� dp�

dn

� �
ð31Þ
where an overbar denotes interpolation between the values of the centroids on either side of the face and dðÞ
dn is

the discrete approximation of the first order derivative normal to the boundary. The velocity corrections U 0n
are related to pressure corrections p0 with (for details in the case of fluids see [14,32]):
U 0n ¼ �
1

2
1þ l

3K

� �DV

AUi
P

dp0

dn
ð32Þ
Assuming that the mesh is orthogonal and the distance between the centroids P and nb is dn, U 0n can be written
as:
U 0n ¼ �
1

2
1þ l

3K

� �DV

AUi
P

p0nb � p0P
dn

ð33Þ
Extensions for non-orthogonal meshes are straightforward [33]. Substituting Eq. (33) into (30) the following
equation for pressure correction is obtained
2qP

K
p�P þ p0P

Dt
� DV þ

X
face f

q U �n �
1

2
1þ l

3K

� �DV

AUi
P

p0nb � p0P
dn

� �
A

� 	
f

¼ Sm ð34Þ
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The pressure, face velocities and face displacements are then corrected and the updated fields are used in the
solution of the momentum equations in the next iteration. The face displacements Dn are calculated from
(21)(b) using the face velocity values i.e.
Dn ¼ DðkÞn þ
1

2
ðU ðkÞn þ U nÞDt ð35Þ
5.1. Implementation of boundary conditions

Within the context of the algorithm described above, the implementation of the prescribed displacement
boundary condition is straightforward. However, the implementation of the prescribed traction boundary
condition (Eq. (23)) is more involved. The component normal to the boundary (Eq. (26)) will be used to derive
a Dirichlet boundary condition for the pressure correction equation. The boundary pressure ðp�bÞ and normal
displacement ðD�nÞ must be corrected so as to satisfy Eq. (26) i.e.
� k
K
ðp�b þ p0bÞ þ 2l

dD�n
dn
þ dD0n

dn

� �
¼ nifi ð36Þ
Using Eq. (35), the displacement correction D0n is evaluated from the pressure correction as:
D0n ¼
1

2
U 0nDt ¼ � 1

4
1þ l

3K

� �DV

AUi
P

dp0

dn
Dt ð37Þ
Substitution of the above equation in (36) yields an implicit equation that involves the second order derivative
of pressure correction at the boundary. The discretised form of this equation must then be solved for p0b. How-
ever, approximation of higher order derivatives at boundaries is complicated especially in unstructured non-
orthogonal meshes and solution for p0b would result in a quite complicated expression. So it was decided to
ignore the correction term dD0n

dn and obtain p0b instead from:
� k
K
ðp�b þ p0bÞ þ 2l

dD�n
dn
¼ nifi ð38Þ
It must be noted that this type of approximation is very similar to the one employed by SIMPLE algorithm for
the derivation of face velocity corrections (Eq. (32)) as explained in [32]. In fact the PISO algorithm [34] was
invented in order to remove this deficiency of SIMPLE. Of course, a PISO-like approach can be used here as
well and a second pressure correction equation can be derived that accounts for the neglected terms. It is
important to stress that this approximation does not affect the final solution; it affects only the convergence
rate. When the code has converged, all the corrections are zero and the equations are satisfied by the ‘‘starred”

variables exactly. Solving for p0b we have:
p0b ¼ �p�b �
K
k

nifi � 2l
dD�n
dn

� �
ð39Þ
This is a Dirichlet condition for the boundary face value of pressure correction in Eq. (34). The derivative dD�n
dn

at the boundary is evaluated using a first order backward approximation.

6. Application to fluid–structure interaction problems

The method is now ready to apply for the simulation of fluid–structure interaction problems. Two condi-
tions must be satisfied at the interface: The solid and fluid velocity components are equal
U sj ¼ U fj ð40Þ
and the total traction on the solid is due to the fluid pressure and viscous forces i.e. Eq. (23) becomes
rijnsj ¼ ð�pf � dij þ tijÞnsj ð41Þ
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where tij ¼ � 2
3
g oUk

oxk
dij þ gðoUi

oxj
þ oUj

oxi
Þ is the viscous stress tensor and the vector~ns is shown in Fig. 1. The incor-

poration of these conditions on the discretised momentum and pressure correction equations is explained
below.

6.1. Momentum equations

The first condition is automatically satisfied because velocity is a common variable for both media. Since
the velocity field is continuous, the integration of the fluid and solid momentum equations in the F and S cells

respectively presents no difficulty. For example the convection term
oqUjUi

oxj
is integrated as usual and any dis-

cretisation scheme can be used to approximate the face velocity (upwind, central, a bounded combination,
etc.). The evaluation of the convective velocity is examined later because it is related directly to the calculation

of pressure. It must be mentioned here that the diffusion term of the Navier–Stokes ðg o2Ui
ox2

j
Þ and the term

l�Dt
2
� o2Ui

ox2
j

in the solids equations are evaluated separately in the corresponding cells. In other words the value

of g and l�Dt
2

in the centroids F and S respectively are not interpolated to find a value at the interface. The inte-

gration of the diffusive terms in the moving wall gives the shear stress, which for laminar flows can be eval-
uated directly or if the flow is turbulent a wall function can be used. It is therefore very easy to
incorporate and test new ideas for improved wall functions in the context of deforming walls.

6.2. Pressure correction equations

The second condition (Eq. (41)) will be used to derive an expression that links the pressure corrections on
either side of the interface using the methodology presented in Section 5.1. Taking the dot product of this
equation with the normal vector ~ns we have
� k
K

ps þ 2l
oDn

ons

¼ �pf þ ðtij � nsjÞnsi ð42Þ
where ps, pf are the pressures on the solid and fluid side of the interface (see Fig. 1 for the notation).
The two pressures ps, pf are not equal i.e. there is a pressure jump. This can be made clearer with the aid of a

simple example. Assume a circular cylinder subjected to internal gas pressure pf while the external pressure is
0. The internal radius of the cylinder is ri and its thickness is h, as shown in Fig. 2. The gas inside the cylinder is
at rest so only the pressure force is acting on the internal cylinder wall. The cylinder has its axial end faces fixed
i.e. the problem is plain strain. For this static case the analytic solution for all the stress components (i.e.
radial, circumferential and axial) is known [25]. Using the definition of pressure for solids (Eq. (9)) the value
of ps at the interface is evaluated from these stresses to be:
ps ¼ �
2

3
ð1þ mÞ pf

riþh
ri

� �2

� 1
ð43Þ
It is obvious that ps 6¼ pf and the pressure difference increases the thinner the cylinder is. Note also that the
solid pressure is constant i.e. does not depend on the radius r. Of course, the normal stress (radial) is contin-
uous. In fact, in order to obtain the analytic solution the boundary conditions rrr(ri) = �pf and rrr(ri + h)=0
Sfn sn

Fluid cell Solid cell

F f sf s

interface

Sfn snF δ f δsf s

Fig. 1. Two cells on either side of the interface.



ripf

ps

h

Fig. 2. A cylinder subjected to internal gas pressure.
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that express mathematically the continuity of radial stresses are employed. And of course this is exactly what
Eq. (42) signifies in a more general setting.

The pressure and displacements must be corrected to satisfy this equation i.e.
� k
K
ðp�s þ p0sÞ þ 2l

dD�n
dns

þ dD0n
dns

� �
þ p�f þ p0f ¼ ðtij � nsjÞnsi ð44Þ
Neglecting the contribution of the correction of normal displacement as before, we get
� k
K

p0s þ p0f ¼ ðtij � nsjÞnsi þ
k
K

p�s � 2l
oD�n
ons

� p�f ð45Þ
The right hand side of this equation is known. This expression provides the link between the pressure correc-
tions on either side of the interface. Furthermore assuming that the pressure corrections at the boundary point
(f) and the nearby centroid (F) on the fluid side are equal i.e. p0f ¼ p0F Eq. (45) can be solved for p0s
p0s ¼ �
K
k
ðSp � p0FÞ ð46Þ
where Sp ¼ ðtij � nsjÞnsi þ k
K p�s � 2l oD�n

ons
� p�f is known. This equation (which is the equivalent of (39) for fluid–

structure interaction problems) will be used now to couple the pressure correction equations on the two sides
together. For the evaluation of the interface normal velocity, the interpolation scheme proposed in [35] is used.
However, due to pressure discontinuity at the interface, this scheme is applied on the solid side only i.e.
U �n ¼ U �n � DU S

p�s � p�S
dn

� dp�

dn

� �
ð47Þ
where DU S ¼ 1
2
ð1þ l

3KÞ
DV S

A
Ui
P

and U n is evaluated from linear extrapolation from the interior of the solid domain.

In this way, derivatives of pressure across a discontinuity are avoided.
The pressure correction equation for the solid cell S next to the interface (see Fig. 1) is:
2qS

KS

p�S þ p0S
Dt

� DV S þ q U �i nsi �
p0s � p0S

ds

DU S

� �
A

� 	
s

þ
X

rest of
faces f

½qðU �i þ U 0iÞniA�f ¼ Sm ð48Þ
Substituting p0s from (46) and after some algebra we find that the discretised equation for pressure correction
for cell S can be put on the form
AP � p0S ¼ AF � p0F þ
X

rest of
neighbours

Anb � p0nb þ SU ð49Þ
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where AF ¼ qs
DUS

ds
As

K
k while the contribution of the (s) face to the SU is �qs

DUS

ds
As � K

k Sp and to AP is qs
DUS

ds
As.

Similarly, the pressure correction equation for the fluid cell F next to the interface (see Fig. 1) is
Table
Physic

Solid p

Modu
Poisso
Densit

Fluid p

Dynam
Densit
Bulk m
2qF

KF

p�F þ p0F � pðkÞF

Dt
� DV F þ q U �i nfi þ

p0s � p0S
ds

DU S

� �
A

� 	
f

þ
X

rest of
faces f

½qðU �i þ U 0iÞniA�f ¼ 0 ð50Þ
Substituting p0s from (46) and after some algebra the discretised equation for pressure correction for the fluid
cell F can be put on the form
AP � p0F ¼ AS � p0S þ
X

rest of
neighbours

Anb � p0nb þ SU ð51Þ
where AS ¼ qf
DUS

ds
Af while the contribution of the (f) face to the SU is qf

DU S

ds
Af

K
k Sp and to AP is qf

DUS

ds
Af

K
k.

7. Results and discussion

The method described in the previous sections was implemented in an in-house three dimensional, fully
unstructured, finite-volume code that solves for the three Cartesian components of velocity and pressure.
The code has been used in the past to model successfully a variety of complex flow patterns [36–38]. For
the fluid cells the equation set (18) was solved while for solids the system (22). For the convection terms
the second order central differencing scheme was used. In order to accommodate the aforementioned pressure
jump, the two media were detached at their interface and different values of pressure were stored at the fluid
side and the solid side. Of course, the velocities and pressure corrections were solved simultaneously resulting
in a strongly coupled velocity–pressure formulation for both media.

The method was applied to simulate the pressure wave propagation in an axisymmetric elastic tube. This is
a standard problem that has been studied theoretically to a great extent (Atabek [39] among many others).
However, the available analytic solutions for the displacement (radial and axial) and pressure are available
on the frequency domain and are based on many simplified assumptions such as linearity of fluids equations,
membrane equations for the solid wall, etc. It was therefore decided to compare the results with the solution of
the Flügge equations that account for the axial as well as bending stiffness of a thin shell. Details about the
Flügge equations, the associated boundary conditions for the problem examined and their numerical solution
are provided in Appendix A. More details on the assumptions employed for their derivation can be found in
the book of Flügge [40]. These equations were coupled with the Navier–Stokes equations written in polar
coordinates and were solved together using a separate in-house code.

The material properties for the solid and fluid component are shown in Table 1. The fluid properties cor-
respond to blood and were taken from Pedley [26]. The values of E and m corresponding to human vessel walls
are 106 and 0.5 respectively. A much higher value of E (2.2 � 1010) was also examined in order to investigate
the behaviour of the method for stiffer walls. The coordinate system employed as well as the basic dimensions
and boundary conditions are shown in Fig. 3. The thickness of the tube is chosen deliberately to be small (1/
20th of the tube radius) so that the theory of thin shells can be applied. Computational details for the cases
1
al properties of the solid and fluid materials

roperties

lus of elasticity (Pa) 106, 2.2 � 1010

n ratio (–) 0.3, 0.5
y (kg/m3) 1000

roperties

ic viscosity (Ns/m2) 0.004
y (kg/m3) 1000
odulus (Pa) 2.2 � 109



Inlet pressure

0.5

10

0utlet pressure

Zero traction
boundary

x

y

Sliding
boundary

Sliding
boundary

100

Fig. 3. Sketch of the computational domain with basic dimensions (in mm) and boundary conditions.

Table 2
Computational details for the cases examined

Case
number

Mesh size
ny � (nxf + nxs)

a
Dt (s) Ramp time

(s)
Poisson
ratio

Modulus of elasticity
(Pa)

Solution of Flügge
equations

1 60 � (19 + 5) 2 � 10�5 2 � 10�3 0.3 106 –
2 60 � (19 + 5) 4 � 10�6 2 � 10�3 0.3 106 –
3 120 � (39 + 10) 4 � 10�6 2 � 10�3 0.3 106 p

4 120 � (39 + 10) 10�6 2 � 10�3 0.3 106 –
5 180 � (59 + 10) 10�6 2 � 10�3 0.3 106 p

6 120 � (39 + 10) 10�6 2 � 10�3 0.5 106 p

7 120 � (39 + 10) 10�6 0 0.5 106 –
8 120 � (39 + 10) 10�7 2 � 10�5 0.3 2.2 � 1010 –

A tick ‘‘
p

” in the ‘‘Solution of the Flügge equations” column for a particular case signifies that these equations were also solved using the
same computational conditions (i.e. fluid mesh size and time step) employed in the general solution method for that case.

a ny is the number of cells in the y direction and nxf, nxs are the number of cells in the x direction for the fluid and solid medium
respectively.
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examined are provided in Table 2. The pressure (in Pa) at the inlet increases linearly with time until a specified
time instant T i.e.
pinl ¼
1000 � t

T ðt 6 T Þ
1000 ðt > T Þ



ð52Þ
The value of T (ramp time) is shown in Table 2. Calculations with T = 0 were also carried out to investigate
the robustness of the method. The outlet pressure remained constant and equal to 0.

The computational domain was a slice of 5� thickness with symmetry conditions on the two x–y planes. A
zoomed-in isometric view of the three meshes examined close to the top boundary is depicted in Fig. 4.

For the values of E and m equal to 106 Pa and 0.3 respectively, the Flügge equations were solved twice using
the same computational conditions (i.e. fluid mesh and time step) that were employed for the general solution



Fig. 4. Isometric views of the three meshes zoomed-in at the top boundary.
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method for cases 3 and 5, as shown in Table 2. The results were almost identical and so the curves labelled
‘‘Flügge equations” for those values of E and m were obtained using the coarse mesh 120 � 39 (case 3).

The variation of centreline pressure along the length of the pipe at 5 time instants is shown in Fig. 5. There
are small differences between the predictions of the two meshes and the general agreement (especially for the
fine mesh, case 5) with the Flügge equations is very good. Note that the peak pressure is higher compared to
the maximum inlet pressure and this is predicted by both approaches. The speed of pressure wave propagation
can be estimated by evaluating the distance travelled by the half-height of the maximum inlet pressure, i.e.
500 Pa within a specified time interval. The propagation velocity in 4 successive time intervals of duration
2 ms from 2 ms to 10 ms is found to be: 3.98 m/s, 4.57 m/s, 4.87 m/s, 4.79 m/s. The results with the Flügge
equations are almost identical. It can be seen that the wave speed varies with the distance from the boundary
end, which aggress with the theoretical finding of [41] for a semi-infinite tube. The smaller speed, especially in
the first interval, might also be attributed to the linear increase of pressure with time at the inlet (Eq. (52)).

For a tube of infinite length, one dimensional analysis [42] yields the following formula for the wave speed:
a ¼ cf �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K f

qf

� 1þ K f

E
� D

h
� ð1� m2Þ

� ��1
s

ð53Þ
where Kf is the bulk modulus of the liquid, D is the internal pipe diameter and cf is a factor that accounts for
the axial stress waves in the pipe wall:
c2
f ¼ 1� m2

1þ E
Kf

h
D 1� Kf

E
qs

qf

� � ð54Þ
This expression is valid for a pipe allowed to expand or contract freely in its radial and axial directions with
stress waves travelling in the pipe wall material in addition to the pressure waves propagating in the liquid [42].
The theoretically predicted value is 5.0 m/s which agree very well (4% error or less) with the predicted values in
the last two subintervals i.e. away from the inlet boundary where the pipe is free to deform in the axial as well
as radial directions.

Contour plots of pressure for the 5 time instants are shown in Fig. 6. The pressure wave propagation is
clearly seen as well as the areas of maximum pressure close to the wall behind the front. The pressure gradient
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Fig. 5. Variation of centreline pressure at 5 time instants.



Fig. 6. Pressure contours at 5 time instants.
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induces an axial velocity at the inlet of the tube, whose variation along the centreline is shown in Fig. 7. The
predictions between the present approach and the one using the Flügge equations are almost identical. Super-
imposed is a horizontal line that represents the analytic expression from one dimensional analysis V ¼ Dp

qf �a
that

gives a value of 0.20 m/s. It is clear that when the pressure wave has fully developed after 2 ms this value is
closely approximated.

The variation of the radial displacement along the length of the tube for various meshes and time steps is
presented in Fig. 8. The results for cases 1 and 2 (coarsest mesh) are shown only for the t = 10 ms to avoid
cluttering up the figure. Clearly this mesh does not provide a grid-independent solution. The other two meshes
provide results that are almost identical. Superimposed on the graph is the static radial displacement for a

plain strain problem w ¼ ð1�m2Þpf ðriþh
2Þ

2

Eh (where ri is the internal radius of the pipe) which gives a value of
0.19 mm. When the pressure pulse has propagated inside the pipe the value of radial displacement at the
entrance approaches this value with good accuracy. Comparison between the Flügge equations using the finest
mesh is shown in Fig. 9. There is excellent matching at the wave front where the radial displacement is smooth
but in the wake of (i.e. behind) the front there are small differences in the maxima and minima between the two
sets of results. These can be attributed to the assumptions inherent in the derivation of the Flügge equations as
explained in the book of Flügge (1960). Calculations were also performed with membrane equations (obtained
by setting b = 0 in Eqs. (A.1) and (A.2) in Appendix A). The results (not shown here) again match very well in
the area of smooth variation while behind the front the agreement with the present methodology was poorer
compared to the Flügge equations. This is expected since close to the boundary the bending stiffness becomes
important. Fig. 10 shows comparison of the axial displacement and again there is fairly good agreement
between the two sets of results.



0 20 40 60 80 100

Distance along tube (mm)

0.00

0.10

0.20

0.30

R
ad

ia
l d

is
pl

ac
em

en
t (

m
m

)

Case 5
Case 4
Case 3

Radial displacement in 
steady state (plain strain)

2ms 4ms 6ms 8ms 10ms

Case 1
Case 2

Cases 1,2

Fig. 8. Predicted radial displacement with various meshes and time steps (cases 1–5).

=
f

p
V

0 20 40 60 80 100

Distance along tube (mm)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A
xi

al
 v

el
oc

ity
 (

m
/s

)

Case 5

2ms 4ms 6ms 8ms 10ms

Flugge equations

αρ
Δ

⋅
=

f

p
V

Fig. 7. Variation of centreline axial velocity at 5 time instants.

G. Papadakis / Journal of Computational Physics 227 (2008) 3383–3404 3399
Calculations were also performed for an incompressible solid. A value of Poisson ratio equal to 0.5 exactly
was used and the code converged is each time step without any stability problems. Comparison of pressure
distribution for this case is shown in Fig. 11. The quality of matching between the two sets of results is similar
as before.

In order to check the robustness of the method and code developed a calculation was carried out with the
value of the ramp time T = 0 (case 7 in Table 2). Again the solid was incompressible. The convergence rate for
this calculation at t = 6 ms is shown in Fig. 12. The underrelaxation factors for both velocities and pressure



0 20 40 60 80 100

Distance along tube (mm)

0.00

0.10

0.20

0.30

R
ad

ia
l d

is
pl

ac
em

en
t (

m
m

)

Case 5

Radial displacement in
steady state (plain strain)

2ms 4ms 6ms 8ms 10ms

Flugge equations

Fig. 9. Predicted radial displacement and comparison with Flügge equations.
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were equal to 0.6 an no attempt was made to optimise them. The normalised residuals (which include both
fluid and solid cells) drop by more than 6 orders of magnitude within about 20 iterations and the convergence
is smooth and monotonous.

For all cases examined so far, the wave propagation velocity is determined by the compliance of the tube
because Kf� E. A final calculation (case 8 in Table 2) was performed with a much stiffer wall (4 orders of
magnitude larger modulus of elasticity), so both the compressibility of the liquid and the elasticity of the tube
contribute to the wave speed. The pressure was recorded again at 5 time instances at intervals of 0.02 ms i.e
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0 5 10 15 20 25
Iterations

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

N
or

m
al

is
ed

 r
es

id
ua

ls x-momentum

y-momentum

z-momentum

Continuity

Convergence
tolerance

t=6 ms

Fig. 12. Convergence history for case 7.

G. Papadakis / Journal of Computational Physics 227 (2008) 3383–3404 3401
from 0 ms to 0.1 ms. The predicted wave speeds were 620 m/s, 625 m/s, 628 m/s, 623 m/s, and match to within
3% the analytic solution (646 m/s).

The previous results demonstrate the accuracy and the good performance of the proposed method. There is
much scope for further development, for example by including large deformations, other constitutive equa-
tions for the solid material or by improving the convergence rate using a PISO-like approach. An advantage
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is that it can be easily incorporated into existing CFD finite-volume codes as it is based on existing code phi-
losophy and enlarge the range of problems that can be tackled without simplifying assumptions. The results
presented in this paper deal only with laminar flows but extension to turbulent flows is straightforward. In this
way, novel turbulence modelling ideas in the context of RANS or LES or novel wall functions can be tested in
complex cases with moving boundaries where the deformation is determined by the solution of the flow field
itself.
8. Conclusions

The paper presented a novel fully-coupled approach for modelling fluid–structure interaction problems for
linear, elastic materials. It is based on a novel velocity–pressure formulation for both media and employs the
same pressure-correction algorithm for the numerical solution of the set of partial differential equations. The
method was applied to model the wave propagation in a flexible tube and comparison with existing analytic
solutions or numerical results using the Flügge equations for a variety of cases showed very good perfor-
mance. There is ample scope for the further development of the method to include large deformation, other
materials and flow conditions.

Appendix A. The Flügge equations and their numerical solution

The equations of Flügge (1960) extend the basic membrane equations by accounting for the bending stiff-
ness of thin shells. For axisymmetric conditions, the axial and radial momentum equations are
c
o

2u
ot2
¼ u00 þ mw0 � bw00 ðA:1Þ
and
�c
o2w
ot2
¼ wþ mu0 þ bðw0000 � u000 þ wÞ � pf

a2

D
ðA:2Þ
respectively where ð Þ0 ¼ a oð Þ
ox and the parameters b, c, D are defined as
b ¼ 1

12

h
a

� �2

c ¼ q
1� m2

E
a2

D ¼ Eh
1� m2

ðA:3Þ
In the above equations, a is the radius of the middle surface, u is its axial displacement, w its radial displace-
ment (positive along increasing radius) and h the thickness of the shell. The terms that account for flexural
rigidity (bending stiffness) are the ones multiplied by the parameter b. For b = 0 the equations reduce to
the membrane equations used widely for the theoretical analysis of pulse propagation in flexible tubes. The
value of the radial displacement velocity ðow

ot Þ is used as boundary condition for the solution of the Navier–
Stokes and continuity equations in axisymmetric coordinates.

The boundary condition for Eq. (A.1) is
u ¼ 0 ðA:4Þ

on either end of the solid domain. Since the Eq. (A.2) is fourth order, two boundary conditions are needed at
each end. For the sliding edge, these conditions are
w000 ¼ u00

w0 ¼ 0
ðA:5Þ
The first expresses mathematically the fact that the shear stress is 0 and the second that rotation is prevented.
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The above equations were discretised using the finite difference method. Standard central difference approx-
imations were employed to approximate the second, third and fourth order derivatives at the interior of the
domain [43] i.e. for values of i = 2, . . ., ni � 1 (see Fig. A1). The standard expressions for uniform mesh were
modified close to the boundaries to account for the varying distances between the points.

The implementation of the boundary condition (A.4) for the left end of the domain is straightforward:
u1 ¼ 0 ðA:6Þ

However (A.5) is more involved. The third order derivative was discretised at point i = 1 with the help of the
auxiliary point i = 0, located a distance Dx/2 on the left of point 1 i.e. symmetrical to point 2. For the second
order derivative a forward approximation was used. Taking into account the different distances between the
various points the discretised form of Eq. (A.5) is:
a3 2ðw3 � 6w2 þ 8w1 � 3w0Þ
Dx3

¼ a2 4

3

u3 � 3u2 þ u1

Dx2

a
w2 � w0

Dx
¼ 0

ðA:7Þ
The value of w0 can be evaluated from the second of (A.7) therefore we have:
a
w3 � 9w2 þ 8w1

Dx
¼ 2

3
ðu3 � 3u2Þ ðA:8Þ
in which (A.6) was used. This equation provides an implicit expression for w1which is used as Dirichlet bound-
ary condition:
w1 ¼
1

8

2Dx
3a
ðu3 � 3u2Þ þ 9w2 � w3

� �
ðA:9Þ
The treatment of the right boundary is identical.

References

[1] H.G. Matthies, J. Steindorf, Partitioned but strongly coupled iteration schemes for non-linear fluid–structure interaction problems,
Comput. Struct. 80 (2002) 1991–1999.

[2] C. Farhat, M. Lesoinne, Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear
transient aeroelastic problems, Comput. Method Appl. Math. 182 (2000) 499–515.

[3] A.K. Slone, K. Pericleous, C. Bailey, M. Cross, Dynamic fluid–structure interaction using finite volume unstructured mesh
procedures, Comput. Struct. 80 (2002) 371–390.

[4] P. Le Tallec, J. Mouro, Fluid structure interaction with large structural displacements, Comput. Method Appl. Math. 190 (2001)
3039–3067.

[5] H.T. Ahn, Y. Kallinderis, Strongly coupled flow/structure interactions with a geometrically conservative ALE scheme on general
hybrid meshes, J. Comput. Phys. 219 (2006) 671–696.

[6] Y. Bazilevs, V.M. Calo, Y. Zhang, T.J.R. Hughes, Isogeometric fluid–structure interaction analysis with applications to arterial blood
flow, Comput. Mech. 38 (2006) 310–322.

[7] M. Heil, An efficient solver for the fully coupled solution of large displacement fluid–structure interaction problems, Comput. Method
Appl. Math. 193 (2004) 1–23.



3404 G. Papadakis / Journal of Computational Physics 227 (2008) 3383–3404
[8] T.E. Tezduyar, S. Sathe, K. Stein, Solution techniques for the fully discretised equations in computation of fluid–structure
interactions with the space–time formulations, Comput. Method Appl. Math. 195 (2006) 5743–5753.
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